446 lines
14 KiB
Python
446 lines
14 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
import math
|
||
|
import imageio
|
||
|
import time
|
||
|
import random
|
||
|
import cython
|
||
|
|
||
|
|
||
|
|
||
|
"""
|
||
|
This class allows us to manipulate vectors
|
||
|
Not all of the functions are used yet - but they might be later when we start adding things
|
||
|
"""
|
||
|
|
||
|
@cython.cclass
|
||
|
class Vec3:
|
||
|
v = cython.declare(cython.float[3],visibility="public")
|
||
|
def __cinit__(self, x:cython.double =0, y:cython.double=0, z:cython.double=0):
|
||
|
self.v:cython.float[3] = [x, y, z]
|
||
|
|
||
|
def __init__(self, x:cython.double =0, y:cython.double=0, z:cython.double=0):
|
||
|
self.v:cython.float[3] = [x, y, z]
|
||
|
|
||
|
def __add__(self, other):
|
||
|
return Vec3(self.v[0] + other.v[0],self.v[1] + other.v[1],self.v[2] + other.v[2],)
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return Vec3(self.v[0] - other.v[0],self.v[1] - other.v[1],self.v[2] - other.v[2],)
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if isinstance(other, Vec3):
|
||
|
return Vec3(self.v[0] * other.v[0],self.v[1] * other.v[1],self.v[2] * other.v[2],)
|
||
|
elif isinstance(other, (int, float)):
|
||
|
return Vec3(self.v[0] * other,self.v[1] * other,self.v[2] * other,)
|
||
|
raise TypeError("Can only multiply by a Vec3 or scalar (int or float).")
|
||
|
|
||
|
@cython.cfunc
|
||
|
def __truediv__(self, scalar):
|
||
|
if scalar == 0:
|
||
|
raise ValueError("Cannot divide by zero.")
|
||
|
return Vec3(*(self.v[i] / scalar for i in range(3)))
|
||
|
|
||
|
def length(self)->cython.float:
|
||
|
return math.sqrt(self.v[0]**2 + self.v[1]**2 + self.v[2]**2)
|
||
|
|
||
|
@cython.cfunc
|
||
|
def normalize(self):
|
||
|
length = self.length()
|
||
|
return self / length if length > 0 else Vec3()
|
||
|
|
||
|
def to_tuple(self):
|
||
|
return (self.v[0],self.v[1],self.v[2])
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"Vec3({self.v[0]}, {self.v[1]}, {self.v[2]})"
|
||
|
|
||
|
@cython.cfunc
|
||
|
def dot(self, other):
|
||
|
return self.v[0]* other.v[0]+self.v[1]* other.v[1]+self.v[2]* other.v[2]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
"""
|
||
|
Here we will be calculating what the value for n is based on T, P, but we will
|
||
|
also be taking dispersion into account - remember, we are considering 440 nm, 550 nm, 680 nm
|
||
|
|
||
|
These equations match the tabulated results made by Penndorf
|
||
|
"""
|
||
|
|
||
|
wavelengths = Vec3(0.68, 0.55, 0.44) # These are the wavelengths in um
|
||
|
|
||
|
# The n_s values gives us the different refractive indices for the different wavelenghts
|
||
|
# The n values give us the new refractive indices depending on the temperature and pressure
|
||
|
|
||
|
@cython.cfunc
|
||
|
def refraction_calculator(T:cython.int, P:cython.int) -> tuple[Vec3, Vec3]:
|
||
|
alpha:cython.float = 0.00367 # in inverse Celsius
|
||
|
t_s:cython.int = 15 # degrees Celsius
|
||
|
p_s:cython.int = 760 # mmHg
|
||
|
|
||
|
n_s_values = [] # for debugging / comparing to the internet values
|
||
|
n_values = []
|
||
|
n_s:cython.double
|
||
|
n:cython.double
|
||
|
i:cython.int
|
||
|
for i in [wavelengths.v[0], wavelengths.v[1], wavelengths.v[2]]:
|
||
|
n_s = 1 + (0.05792105 / (238.0185 - i**-2) + 0.00167917 / (57.362 - i**-2))
|
||
|
|
||
|
n = ((n_s - 1) * ((1 + alpha * t_s) / (1 + alpha * T)) * (P / p_s)) + 1
|
||
|
|
||
|
n_s_values.append(n_s)
|
||
|
n_values.append(n)
|
||
|
|
||
|
return Vec3(*n_s_values), Vec3(*n_values)
|
||
|
|
||
|
@cython.cfunc
|
||
|
def beta(n_values:Vec3):
|
||
|
|
||
|
N_s:cython.double = 2.54743e7 # um^-3
|
||
|
|
||
|
beta_values = []
|
||
|
|
||
|
for i, n in enumerate(n_values.v):
|
||
|
wavelength = wavelengths.v[i] # Corresponding wavelength value
|
||
|
beta_1 = ((8 * math.pi * (n**2 - 1)**2) / ((2 * N_s) * (wavelength)**4))*1e6 # The whole thing should be in m^-1 to match with the rest of the code
|
||
|
|
||
|
beta = (beta_1*10)
|
||
|
beta_values.append(beta)
|
||
|
|
||
|
return Vec3(beta_values[0],beta_values[1],beta_values[2])
|
||
|
|
||
|
|
||
|
# Example usage, normal is 25, 750
|
||
|
T:cython.int = 5 # Temperature in degrees Celsius
|
||
|
P:cython.int = 760 # Pressure in mmHg
|
||
|
n_s_values:Vec3
|
||
|
n_values:cython.double
|
||
|
n_s_values, n_values = refraction_calculator(T, P)
|
||
|
beta_values = beta(n_values)
|
||
|
|
||
|
#print("n_s values:", refraction_calculator_result.v)
|
||
|
#print("n values:", n_values.v)
|
||
|
#print("Beta values:", beta_values.v)
|
||
|
|
||
|
|
||
|
# In[7]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
Here we are able to change the sun's direction - once the GUI is in place, this will be done from there
|
||
|
"""
|
||
|
|
||
|
kInfinity = float('inf')
|
||
|
angle_degrees:cython.int = 90 # Sun direction in degrees (0 to 90, noon to sunset)
|
||
|
angle_radians:cython.double = math.radians(angle_degrees) # Convert to radians
|
||
|
sunDir:Vec3 = Vec3(0, math.cos(angle_radians), -math.sin(angle_radians))
|
||
|
|
||
|
|
||
|
"""
|
||
|
The betaR values come from the previous cell
|
||
|
"""
|
||
|
|
||
|
#betaR = Vec3(3.8e-6, 13.5e-6, 33.1e-6), this is what the Nishita paper used
|
||
|
betaR = Vec3(*beta_values.v) # Keeps it as a Vec3
|
||
|
|
||
|
|
||
|
"""
|
||
|
There are many "categories" of aerosols and each has their own extinction coefficient (I removed the factor of 1.1)
|
||
|
|
||
|
Continental Clean - 26e-6 g = 0.709
|
||
|
Continental Average - 75e-6 g = 0.703
|
||
|
Continental Polluted - 175e-6 g = 0.698
|
||
|
|
||
|
Urban - 353e-6 g = 0.689
|
||
|
|
||
|
Desert - 145e-6 g = 0.729
|
||
|
|
||
|
Maritime Clean - 90e-6 g = 0.772
|
||
|
Maritime Polluted - 115e-6 g = 0.756
|
||
|
Maritime Tropic - 43e-6 g = 0.774
|
||
|
|
||
|
Arctic - 23e-6 g = 0.721
|
||
|
|
||
|
Antarctic - 11e-6 g = 0.784
|
||
|
|
||
|
|
||
|
"""
|
||
|
betaM = Vec3(11e-6, 11e-6, 11e-6) # We need to have the Mie scattering be the same in all the directions
|
||
|
# The greater the value of beta, the smaller the Mie scattering point (responsable for the halo around the sun)
|
||
|
# If there is more pollution, we get a larger halo and the colors of the sunset become desaturated (more hazy)
|
||
|
# Default is 21e-6
|
||
|
|
||
|
# For the value of betaM, we also need to change the anisotropy factor. This is in the same paper.
|
||
|
g = 0.784
|
||
|
|
||
|
"""
|
||
|
The atmosphere model we use is as follows, with the radii and the scale heights
|
||
|
"""
|
||
|
earthRadius:cython.int = 6360e3 #m
|
||
|
atmosphereRadius:cython.int = 6420e3 #m (60 km higher than earth)
|
||
|
Hr:cython.int = 7994
|
||
|
Hm:cython.int = 1200
|
||
|
|
||
|
|
||
|
# In[8]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
This is the compute incident light funciton from Nishita's paper
|
||
|
We translated it to Python and then are using cython to make it go faster
|
||
|
|
||
|
This is all explained in more detail in the submitted PDF
|
||
|
"""
|
||
|
|
||
|
@cython.cfunc
|
||
|
def computeIncidentLight(direction:Vec3) -> tuple[float,float,float]:
|
||
|
tmin:cython.float=0
|
||
|
tmax:cython.float=kInfinity
|
||
|
|
||
|
# We can change the origin position if we want, but for now it is 1 meter above the surface
|
||
|
orig:Vec3 = Vec3(0, earthRadius + 1, 0)
|
||
|
t0:cython.float
|
||
|
t1:cython.float
|
||
|
t0, t1 = raySphereIntersect(orig, direction, atmosphereRadius)
|
||
|
if t1 < 0:
|
||
|
return Vec3(0, 0, 0)
|
||
|
if t0 > tmin and t0 > 0:
|
||
|
tmin = t0
|
||
|
if t1 < tmax:
|
||
|
tmax = t1
|
||
|
|
||
|
numSamples:int = 16
|
||
|
numSamplesLight:int = 8
|
||
|
segmentLength = (tmax - tmin) / numSamples
|
||
|
tCurrent = tmin
|
||
|
sumR = Vec3()
|
||
|
sumM = Vec3()
|
||
|
opticalDepthR = 0
|
||
|
opticalDepthM = 0
|
||
|
mu:cython.float = direction.dot(sunDir) # This is the cosine of the angle between the direction vector (V) and the sun Direction
|
||
|
|
||
|
"""
|
||
|
Phase functions - the anisotropy factor depends on the Mie scattering we have chosen, it is defined in the previous cell
|
||
|
"""
|
||
|
phaseR = (3 * (1 + (mu * mu))) / (16 * math.pi)
|
||
|
phaseM = 3 / (8 * math.pi) * ((1 - g * g) * (1 + mu * mu)) / ((2 + g * g) * ((1 + g * g - 2 * g * mu) ** 1.5))
|
||
|
|
||
|
i:cython.int
|
||
|
for i in range(numSamples):
|
||
|
samplePosition = orig + direction * (tCurrent + segmentLength * 0.5)
|
||
|
height = samplePosition.length() - earthRadius
|
||
|
hr = math.exp(-height / Hr) * segmentLength
|
||
|
hm = math.exp(-height / Hm) * segmentLength
|
||
|
opticalDepthR += hr
|
||
|
opticalDepthM += hm
|
||
|
|
||
|
# Sample position is the start, but it should be in the direction of the sun
|
||
|
t0Light, t1Light = raySphereIntersect(samplePosition, sunDir, atmosphereRadius)
|
||
|
|
||
|
if t1Light < 0:
|
||
|
continue
|
||
|
|
||
|
segmentLengthLight = (t1Light - t0Light) / numSamplesLight
|
||
|
tCurrentLight = 0
|
||
|
opticalDepthLightR = 0
|
||
|
opticalDepthLightM = 0
|
||
|
|
||
|
j:cython.int
|
||
|
for j in range(numSamplesLight):
|
||
|
samplePositionLight = samplePosition + (sunDir * (tCurrentLight + segmentLengthLight * 0.5))
|
||
|
heightLight = samplePositionLight.length() - earthRadius
|
||
|
if heightLight < 0:
|
||
|
break
|
||
|
opticalDepthLightR += (math.exp(-heightLight / Hr) * segmentLengthLight)
|
||
|
opticalDepthLightM += (math.exp(-heightLight / Hm) * segmentLengthLight)
|
||
|
tCurrentLight += segmentLengthLight
|
||
|
|
||
|
if j == numSamplesLight - 1:
|
||
|
tau = (betaR * (opticalDepthR + opticalDepthLightR)) + (betaM * (opticalDepthM + opticalDepthLightM))
|
||
|
attenuation = Vec3(math.exp(-tau.v[0]), math.exp(-tau.v[1]), math.exp(-tau.v[2]))
|
||
|
sumR += (attenuation * hr)
|
||
|
sumM += (attenuation * hm)
|
||
|
tCurrent += (segmentLength)
|
||
|
|
||
|
# Changing the * 20 number just changes the intensity os the light, it does not much change the colors themselves, this is the "magic number" Nishita used
|
||
|
final_color = (sumR * betaR * phaseR + sumM * betaM * phaseM) * 20
|
||
|
return final_color.to_tuple()
|
||
|
|
||
|
|
||
|
# In[9]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
These are complimentary functions that are used to solve the intensity of light. Again, from nishita's paper
|
||
|
"""
|
||
|
|
||
|
@cython.cfunc
|
||
|
def raySphereIntersect(orig:Vec3, direction:Vec3, radius:cython.double) -> tuple[cython.float,cython.float]:
|
||
|
A:cython.double = direction.v[0]**2 + direction.v[1]**2 +direction.v[2]**2
|
||
|
B:cython.double = 2 * (direction.v[0]*orig.v[0] +direction.v[1]*orig.v[1] +direction.v[2]*orig.v[2] )
|
||
|
C:cython.double = orig.v[0]**2 + orig.v[1]**2 +orig.v[2]**2 - radius ** 2
|
||
|
|
||
|
t0: cython.float
|
||
|
t1: cython.float
|
||
|
t0, t1 = solveQuadratic(A, B, C)
|
||
|
if t1 < 0:
|
||
|
return (kInfinity, kInfinity)
|
||
|
if t0 > t1:
|
||
|
t0, t1 = t1, t0
|
||
|
return (t0, t1)
|
||
|
|
||
|
@cython.cfunc
|
||
|
def solveQuadratic(a:cython.double, b:cython.double, c:cython.double) -> tuple[cython.float,cython.float]:
|
||
|
if b == 0:
|
||
|
if a == 0:
|
||
|
return (0, 0)
|
||
|
x1 = 0
|
||
|
x2 = math.sqrt(-c / a)
|
||
|
return (x1, x2)
|
||
|
discr = b ** 2 - 4 * a * c
|
||
|
if discr < 0:
|
||
|
return (kInfinity, kInfinity)
|
||
|
|
||
|
q = (-0.5 * (b - np.sqrt(discr))) if b < 0 else (-0.5 * (b + np.sqrt(discr)))
|
||
|
x1 = q / a
|
||
|
x2 = c / q
|
||
|
return (x1, x2)
|
||
|
|
||
|
|
||
|
# In[10]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
Rendering Skydome image
|
||
|
"""
|
||
|
|
||
|
@cython.cfunc
|
||
|
def renderSkydome(filename):
|
||
|
width:cython.int
|
||
|
height:cython.int
|
||
|
width, height = 256,256
|
||
|
image = np.zeros((height, width, 3), dtype=float)
|
||
|
|
||
|
start_time = time.time() # Start timing
|
||
|
|
||
|
j:cython.int
|
||
|
i:cython.int
|
||
|
x:cython.float
|
||
|
y:cython.float
|
||
|
z2:cython.float
|
||
|
phi:float
|
||
|
theta:float
|
||
|
direction:Vec3
|
||
|
for j in range(height):
|
||
|
for i in range(width):
|
||
|
x = 2 * (i + 0.5) / (width - 1) - 1
|
||
|
y = 2 * (j + 0.5) / (height - 1) - 1
|
||
|
z2 = x * x + y * y
|
||
|
if z2 <= 1:
|
||
|
phi = math.atan2(y, x)
|
||
|
theta = math.acos(1 - z2)
|
||
|
# This changes for each pixel
|
||
|
direction = Vec3(math.sin(theta) * math.cos(phi), math.cos(theta), math.sin(theta) * math.sin(phi))
|
||
|
color = computeIncidentLight(direction)
|
||
|
#color = computeIncidentLight(direction)
|
||
|
|
||
|
|
||
|
# Assign the clipped color directly to the image array
|
||
|
image[j][i][0] = np.clip(color, 0, 1)[0]
|
||
|
image[j][i][1] = np.clip(color, 0, 1)[1]
|
||
|
image[j][i][2] = np.clip(color, 0, 1)[2]
|
||
|
|
||
|
# Print elapsed time after each row
|
||
|
elapsed_time = time.time() - start_time
|
||
|
print(f"Rendering row {j + 1}/{height}, elapsed time: {elapsed_time:.2f} seconds")
|
||
|
#print(f"Rendering row {j + 1}/{height}")
|
||
|
|
||
|
# Save result to a PNG image
|
||
|
image = np.clip(image, 0, 1) * 255 # change 255
|
||
|
imageio.imwrite(filename, image.astype(np.uint8))
|
||
|
|
||
|
|
||
|
|
||
|
# In[11]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
Rendering camera image
|
||
|
"""
|
||
|
|
||
|
|
||
|
def renderFromCamera(filename: str):
|
||
|
width: cython.int = 252
|
||
|
height: cython.int = 252
|
||
|
image = np.zeros((height, width, 3), dtype=np.float32)
|
||
|
|
||
|
aspectRatio: cython.float = width / float(height)
|
||
|
fov: cython.float = 65.0 # Field of view
|
||
|
angle: cython.float = np.tan(fov * np.pi / 180 * 0.5) # Camera's view angle
|
||
|
|
||
|
start_time = time.time() # Start timing
|
||
|
|
||
|
numPixelSamples: cython.int = 4
|
||
|
y: cython.int
|
||
|
x: cython.int
|
||
|
m: cython.int
|
||
|
n: cython.int
|
||
|
rayx: cython.float
|
||
|
rayy: cython.float
|
||
|
direction: Vec3
|
||
|
color: tuple # Assuming computeIncidentLight returns a tuple
|
||
|
|
||
|
for y in range(height):
|
||
|
for x in range(width):
|
||
|
sum_color = np.zeros(3, dtype=np.float32) # Use numpy array for accumulation
|
||
|
|
||
|
for m in range(numPixelSamples):
|
||
|
for n in range(numPixelSamples):
|
||
|
# Compute ray direction with jitter
|
||
|
rayx = (2 * (x + (m + random.uniform(0, 1)) / numPixelSamples) / float(width) - 1) * aspectRatio * angle
|
||
|
rayy = (1 - (y + (n + random.uniform(0, 1)) / numPixelSamples) / float(height) * 2) * angle
|
||
|
|
||
|
# Create the direction vector and normalize it
|
||
|
direction = Vec3(rayx, rayy, -1).normalize()
|
||
|
color = computeIncidentLight(direction) # Assuming this returns a tuple
|
||
|
|
||
|
# Accumulate color values
|
||
|
sum_color[0] += color[0]
|
||
|
sum_color[1] += color[1]
|
||
|
sum_color[2] += color[2]
|
||
|
|
||
|
# Average the accumulated color and clip to [0, 1]
|
||
|
image[y, x] = np.clip(sum_color / (numPixelSamples * numPixelSamples), 0, 1)
|
||
|
|
||
|
# Print elapsed time after each row
|
||
|
elapsed_time = time.time() - start_time
|
||
|
print(f"Rendering row {y + 1}/{height}, elapsed time: {elapsed_time:.2f} seconds")
|
||
|
|
||
|
# Save the result to a PNG image
|
||
|
image = np.clip(image, 0, 1) * 255
|
||
|
imageio.imwrite(filename, image.astype(np.uint8))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# In[12]:
|
||
|
|
||
|
|
||
|
"""
|
||
|
Testing
|
||
|
"""
|
||
|
|
||
|
renderSkydome("test.png")
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|