fixed temperature bug

This commit is contained in:
Technoduck 2024-11-20 10:34:37 -05:00
parent b62b4b921c
commit 5ecade7cb0
2 changed files with 29 additions and 16 deletions

12
app.py
View file

@ -124,7 +124,7 @@ class renderedImageZoom:
t_frame = tkinter.Frame(self.aerosol_window)
text_t = tkinter.Text(t_frame,height=1,width=10)
submit_t_button = tkinter.Button(t_frame,text="set temperature",
command=lambda: [self.set_temp(text_t.get("1.0","end-1c")),t_label.config(text=str(sorted([-270,int(value),100])[1])+" C")])
command=lambda: [self.set_temp(text_t.get("1.0","end-1c")),t_label.config(text=str(sorted([-270,int(text_t.get("1.0","end-1c")),100])[1])+" C")])
#submit_t_button = tkinter.Button(t_frame,text="set temperature",command=lambda: [print("what"),t_label.config(text="bruh")])
t_label = tkinter.Label(t_frame,text="5 C")
text_t.pack(side=tkinter.LEFT)
@ -147,7 +147,7 @@ class renderedImageZoom:
s_frame = tkinter.Frame(self.aerosol_window)
text_s = tkinter.Text(s_frame,height=1,width=10)
submit_s_button = tkinter.Button(s_frame,text="set direction of the sun",command=lambda: [self.set_sun(text_s.get("1.0","end-1c")),
sun_dir_label.config(text=str(sorted([0,int(text_t.get("1.0","end-1c")),90])[1])+" degrees")])
sun_dir_label.config(text=str(sorted([0,int(text_s.get("1.0","end-1c")),90])[1])+" degrees")])
sun_dir_label = tkinter.Label(s_frame,text="90 degrees")
text_s.pack(side=tkinter.LEFT)
sun_dir_label.pack(side=tkinter.RIGHT)
@ -257,7 +257,13 @@ class renderedImageZoom:
slice = self.image[:][low:high]
red = 0
for line in slice:
red += sum([p[0]/(p[0]+p[1]+p[2]) for p in line])
for pixel in line:
if sum(pixel) == 0:
print(pixel)
red += 0
else:
print(pixel)
red += pixel[0]/sum(pixel)
red = red / (100*(high-low))
return "{} is the pixel average".format(red)

View file

@ -76,8 +76,11 @@ wavelengths = Vec3(0.68, 0.55, 0.44) # These are the wavelengths in um
@cython.cfunc
def refraction_calculator(T:cython.int, P:cython.int) -> tuple[Vec3, Vec3]:
alpha:cython.float = 0.00367 # in inverse Celsius
t_s:cython.int = T # degrees Celsius
p_s:cython.int = P # mmHg
#t_s:cython.int = T # degrees Celsius
#p_s:cython.int = P # mmHg
t_s:cython.int = 25 # Temperature in degrees Celsius
p_s:cython.int = 760 # Pressure in mmHg
n_s_values = [] # for debugging / comparing to the internet values
n_values = []
@ -112,12 +115,12 @@ def beta(n_values:Vec3):
# Example usage, normal is 25, 750
T:cython.int = 5 # Temperature in degrees Celsius
P:cython.int = 760 # Pressure in mmHg
n_s_values:Vec3
n_values:cython.double
n_s_values, n_values = refraction_calculator(T, P)
beta_values = beta(n_values)
#t_s:cython.int = 25 # Temperature in degrees Celsius
#p_s:cython.int = 760 # Pressure in mmHg
#n_s_values:Vec3
#n_values:cython.double
#n_s_values, n_values = refraction_calculator(T, P)
#beta_values = beta(n_values)
#print("n_s values:", refraction_calculator_result.v)
#print("n values:", n_values.v)
@ -138,7 +141,7 @@ It also varies according to temperature
"""
betaR = Vec3(*beta_values.v) # Keeps it as a Vec3
#betaR = Vec3(*beta_values.v) # Keeps it as a Vec3
#betaR = Vec3(3.8e-6, 13.5e-6, 33.1e-6)
# R, G, B (the smaller the value, the less it will scatter during the day) in m-1
@ -180,7 +183,7 @@ Hm:cython.int = 1200
# The direction will change for each pixel
@cython.cfunc
def computeIncidentLight(direction:Vec3,betaM,g,observerEarthRadius,sunDir) -> tuple[float,float,float]:
def computeIncidentLight(direction:Vec3,betaM,betaR,g,observerEarthRadius,sunDir) -> tuple[float,float,float]:
tmin:cython.float=0
tmax:cython.float=kInfinity
@ -298,6 +301,10 @@ def renderSkydome(filename,betaM,g,altitude,T,P,sunDir):
observerEarthRadius = earthRadius + altitude
start_time = time.time() # Start timing
n_s_values, n_values = refraction_calculator(T, P)
beta_values = beta(n_values)
betaR = Vec3(*beta_values.v) # Keeps it as a Vec3
j:cython.int
i:cython.int
x:cython.float
@ -316,7 +323,7 @@ def renderSkydome(filename,betaM,g,altitude,T,P,sunDir):
theta = math.acos(1 - z2)
# This changes for each pixel
direction = Vec3(math.sin(theta) * math.cos(phi), math.cos(theta), math.sin(theta) * math.sin(phi))
color = computeIncidentLight(direction,betaM,g,observerEarthRadius,sunDir)
color = computeIncidentLight(direction,betaM,betaR,g,observerEarthRadius,sunDir)
#color = computeIncidentLight(direction)
@ -375,7 +382,7 @@ def renderFromCamera(filename,betaM,g,altitude,T,P,sunDir):
#This changes for each pixel, it is the direction we are looking in
direction = Vec3(rayx, rayy, -1).normalize()
color = computeIncidentLight(direction,betaM,g,observerEarthRadius,sunDir)
color = computeIncidentLight(direction,betaM,betaR,g,observerEarthRadius,sunDir)
#image[y, x] = np.array(color)
image[y][x] = np.clip(color, 0, 1)